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Abstract: We examine the angular momentum of an electric charge e placed at rest out-

side a dilaton black hole with magnetic charge Q. The electromagnetic angular momentum

which is stored in the electromagnetic field outside the black hole shows several common

features regardless of the dilaton coupling strength, though the dilaton black holes are

drastically different in their spacetime structure depending on it. First, the electromag-

netic angular momentum depends on the separation distance between the two objects and

changes monotonically from eQ to 0 as the charge goes down from infinity to the horizon,

if rotational effects of the black hole are discarded. Next, as the black hole approaches

extremality, however, the electromagnetic angular momentum tends to be independent of

the distance between the two objects. It is then precisely eQ as in the electric charge and

monopole system in flat spacetime. We discuss why these effects are exhibited and argue

that the above features are to hold in widely generic settings including black hole solutions

in theories with more complicated field contents, by addressing the no hair theorem for

black holes and the phenomenon of field expulsion exhibited by extremal black holes.
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1. Introduction

The influence of a gravitational field on external fields around black holes was investigated

in 1970s and 1980s by a number of authors. In particular, the electrostatic field near

a black hole was derived by Hanni and Ruffini [1] for a point charge at rest, by Cohen

and Wald [2] for multipole fields, and by Linet [3] in algebraic form in Schwarzschild

spacetime. Leaute and Linet [4] applied this test field approximation to the case of a

Reissner-Nordström black hole background. Recently, the problem of a point charge at rest

near a Reissner-Nordström black hole was reconsidered by Bini, Geralico and Ruffini [5, 6]

using the first order perturbation approach formulated by Zerilli [7]. External stationary

magnetic fields were also considered in the presence of Kerr black holes using the test field

approximation by Wald [8] and of Reissner-Nordström black holes employing the first order

coupled perturbations by Bičák and Dvořák [9]. The authors found that, as electromagnetic

multipole moments approach the horizon of a black hole, all the multipole moments fade

away except the monopole. That is, the no hair conjecture for the electromagnetic multipole

moments holds for the black hole and so there is no black hole with multipole moments

other than the monopole. Another noticeable result of these works is that the component of

the electromagnetic field normal to the horizon tends to vanish as the black holes approach

extremality and the flux lines are totally expelled in the extremal limit. This is analogous

to the “Meissner effect” for a magnetic field around a superconductor [10].

In this paper we consider a system of an electric charge and a magnetically charged

dilaton black hole (instead of an electrically charged Reissner-Nordström black hole). We

don’t try to derive the electric field structure of the charge. Instead, we examine the

angular momentum associated with the system. As is well known, the angular momentum

of a static configuration of an electric charge e and a magnetic monopole Q is precisely eQ in
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flat space [11]. The angular momentum is all stored in the electromagnetic fields. However,

when the monopole is replaced with a magnetically charged black hole, the electromagnetic

angular momentum1 changes in a somewhat complicated way. Such system was considered

originally by Garfinkle and Rey [12] many years ago and by Bunster and Henneaux [22]

recently. As was shown by Garfinkle and Rey, for a system of an electric charge e held

at rest outside a magnetically charged black hole of strength Q in the Einstein-Maxwell

theory, the angular momentum stored in the electromagnetic field outside the black hole

does depend upon the separation distance between the two objects. The electromagnetic

angular momentum changes monotonically from 0 to eQ as the charge moves from the

horizon to infinity. However, in the extreme limit of the black hole it does not depend on

the separation and is precisely eQ, as in the system of an electric charge and a monopole

in flat space.

We shall see below that these results remain to be true even when the theory includes

dilatonic couplings. This is somewhat striking because charged black hole solutions of the

dilaton gravity [13, 14] have many properties distinct from those of the Reissner-Nordström

black hole, depending on the strength of the dilaton coupling α. Each dilaton black hole

has only one horizon and a spacelike singularity giving rise to a Schwarzschild-type space-

time structure, whereas the typical Reissner-Nordström black hole has two horizons and a

timelike singularity. Furthermore, the event horizon of a dilaton black hole is actually sin-

gular in the extremal limit and has zero area, as opposed to that of the Reissner-Nordström

black hole which has finite area and is nonsingular. The thermodynamical relationships

also differ depending on the dilaton coupling α which is a nonnegative constant. In the

extremal limit the dilaton black holes have zero entropy and their temperature is zero

for α < 1, finite for α = 1, and infinite for α > 1. Extremal black holes for α > 1 act

more like elementary particles than usual Reissner-Nordström black holes because infinite

potential barriers form outside the horizon [16]. Many other features of the dilaton black

hole solutions (but not all) depend on the coupling strength α. In spite of these distinctive

differences, however, the qualitative features of the electromagnetic angular momentum

are not modified in the presence of the magnetically charged dilaton black hole (instead

of the Reissner-Nordström black hole). Regardless of the strength of the dialton coupling,

the electromagnetic angular momentum also changes monotonically from 0 to eQ as the

charge moves from the horizon to infinity for non-extreme dilaton black holes, while it is

independent of the separation distance with the precise value eQ in the extremal limit of

the black hole.

Since the dilaton black holes are drastically different in their spacetime structure from

the Reissner-Nordström black holes, the fact that qualitative features of the electromag-

netic angular momentum are independent of the dialton coupling makes us expect that

such features are common to black holes in various theories with more complicated field

contents. Indeed, the nature of the electromagnetic angular momentum seems to be generic

for various black holes as far as the no hair theorem holds for the black holes and electro-

1We will use this term to designate the angular momentum stored in the electromagnetic field outside

the black hole.
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magnetic fields are expelled from the horizon in the extremal limit of the black holes. We

shall argue that the separation dependence of the electromagnetic angular momentum in

the non-extremal case is related to the nontrivial spacetime structure, i.e., the existence of

the non-degenerate horizon, and the no hair nature of black holes. On the other hand, the

fact that it is independent of the separation distance and its value is precisely eQ in the

extremal limit comes from the phenomenon of flux expulsion exhibited by extreme black

holes mentioned in the first paragraph of this section.

The plan of our work is as follows. In the next section, we shall first summarize the

magnetically charged black hole solution to the Einstein-Maxwell-dilaton gravity. In sec-

tion 3, we derive an equation governing the angular momentum function of the system

of an electric charge and a magnetic dilaton black hole by extending Garfinkle and Rey’s

work. In section 4, we analyze solutions of the equation. In section 5, we examine the

electromagnetic angular momentum of the charge and black hole system analytically and

numerically. In the last section, we argue that the monotonic variation of the electromag-

netic angular momentum from 0 to eQ in the non-extremal black hole case comes from the

no hair nature of the black hole and that its independence from the separation distance in

the extremal limit of black holes results from the flux expulsion by extremal black holes.

2. Magnetically charged dilaton black holes

In this section we give a brief introduction to the charged dilaton black holes in 3 + 1

dimensions found by Gibbons et al.[13] and Garfinkle et al.[14] and slowly rotating dilaton

black holes discussed by Horne et al.[15]. The action for the Einstein-Maxwell-dilaton

gravity is given by, in the Einstein frame,

S =

∫

d4x
√−g

[

−R + 2(∇φ)2 + e−2αφF 2
]

, (2.1)

where R is the scalar curvature, φ the dilaton field and Fµν the Maxwell field strength. α is

a non-negative constant governing the strength of the dilaton coupling to the Maxwell field.

For α = 0 this action corresponds to the standard Einstein-Maxwell action with an extra

free scalar field. When α = 1, this action describes a part of the tree-level low energy limit

of string theory in the Einstein frame. The case α =
√

3 gives simply the Kaluza-Klein

action which is obtained by dimensionally reducing the five-dimensional vacuum Einstein

action. The equations of motion derived from the above action (2.1) are

∇a(e
−2αφF ab) = 0, (2.2)

∇2φ +
α

2
e−2αφF 2 = 0, (2.3)

Rab = 2∇aφ∇bφ + 2e−2αφFacFb
c − 1

2
gabe

−2αφF 2. (2.4)

The magnetically charged and spherically symmetric static black hole solution of the
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above equations takes the form [13, 14]

F = Q sin θ dθ ∧ dϕ, (2.5)

e−2φ =
(

1 − r−
r

)2α/(1+α2)
, (2.6)

ds2 = −λ2dt2 +
dr2

λ2
+ R2dΩ2, (2.7)

where

λ2 =
(

1 − r+

r

) (

1 − r−
r

)(1−α2)/(1+α2)
, (2.8)

R2 = r2
(

1 − r−
r

)2α2/(1+α2)
. (2.9)

Here, r+ and r− are the values of the parameter r at the outer and the inner horizon,

respectively, and are related to the physical mass and the magnetic charge by

M =
r+

2
+

(

1 − α2

1 + α2

)

r−
2

, (2.10)

Q =

(

r+r−
1 + α2

)1/2

. (2.11)

R, not r, has the normal meaning of the radial variable, in the sense that the area of the

sphere obtained by varying θ and ϕ at fixed t and r (or R) is 4πR2.

The qualitative features of dilaton black holes depend crucially on α. When α = 0,

this solution reduces to the Reissner-Nordström solution of the Einstein-Maxwell theory.

The geometry is then not singular at either of r− and r+. For all α, the surface r = r+ is an

event horizon. However, for α 6= 0 the geometry is singular at r−, because R vanishes there.

In fact, the surface r = r− is a spacelike curvature singularity very similar to that in the

Schwarzschild metric. The singularity is shielded by the horizon if M ≥ Mc ≡ Q/
√

1 + α2.

Due to this difference, there occurs a big difference in the spacetime structure of the

extremal black holes in the two cases. For α = 0 the area of the event horizon is finite.

However, for α 6= 0 the area vanishes for the extremal black holes and the geometry is

singular there.

The temperature and entropy of the black holes are given by, respectively,

T =
1

4πr+

(

1 − r−
r+

)(1−α2)/(1+α2)

, (2.12)

S = πr+
2

(

1 − r−
r+

)2α2/(1+α2)

. (2.13)

Evidently the extremal black holes will have finite entropy in case α = 0, but zero entropy

otherwise. The temperature of the extremal black holes is zero for α < 1, finite and

equal to 1/8πM for α = 1, and infinite for α > 1. Extremal black holes with non-

zero temperature inevitably develop naked singularities and are therefore not physically

acceptable. However, Holzhey and Wilczek [16] showed that black holes with α > 1 have
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infinite mass gaps. These black holes can neither absorb any finite energy from impinging

objects nor radiate into these modes. In these senses the α > 1 extremal black holes act

more like elementary particles.

Now we brief on the rotating dilaton black hole solution for further works in the

following sections. Since there is no explicit solution describing rotating charged black hole

for arbitrary α, the rotating solution is considered in the limit of slow rotation of [15].

gtφ is the only term in the metric that changes to first order in the angular momentum

parameter a. The dilaton does not change to O(a), and At is the only component of the

vector potential that changes to O(a). For arbitrary α, in the limit of slow rotation the

metric has the following form:

ds2 = −λ2(r)dt2 +
dr2

λ2(r)
+ R2(r)dΩ2 − 2af(r)R2(r) sin2 θdtdφ, (2.14)

where

f(r) ≡ (1 + α2)2

(1 − α2)(1 − 3α2)

1

r2
−

(2.15)

−
[

1

r2
+

(1 + α2)2

(1 − α2)(1 − 3α2)

1

r2
−

+
1 + α2

1 − α2

1

r−r
− r+

r3

]

(

1 − r−
r

)(1−3α2)/(1+α2)
.

The surface gravity and the area of the event horizon do not change to O(a). However, for

α > 1, a small amount of rotation produces a large change in the geometry close to the

horizon of a nearly extremal black hole. In the extremal limit, as r approaches r+ = r−,

f(r)R2(r) diverges for α > 1. The angular momentum changes to O(a) as discussed in [15].

The angular momentum J is related to the asymptotic form of the metric by

gtϕ ∼ −2J

r
sin2 θ + O

(

1

r2

)

, (2.16)

which gives

J =
a

6

(

3r+ +
3 − α2

1 + α2
r−

)

. (2.17)

3. Equation for the angular momentum

In this section we derive an equation governing the angular momentum of a particle of

mass m and charge e at rest in the field of a magnetically charged dilaton black hole. We

assume that the charge and mass of the particle is small enough and hence we can calculate

the angular momentum to first order in m and e. It is straightforward to solve Einstein-

Maxwell-dilaton equations eqs. (2.2)–(2.4) to first order, because most of components of

the metric and the gauge field change only to second order. Though many of the interesting

physical quantities come into second order, we can still extract some useful information on

the angular momentum from the first order analysis.

To zeroth order the fields and the metric are described by eq. (2.5)–(2.7). Since the

system is axisymmetric, the components of the metric and the gauge field that come into
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first order can be deduced from the inspection of axially symmetric black holes like the

Kerr-Newman solution. The only terms of the metric and the gauge field that change

to first order are gtϕ and At. The existence of At also follows from the Bianchi identity

∇[aFbc] = 0 and the fact that the Lie derivative of Fab with respect to (∂/∂t)a vanishes. The

corrections to other components of the fields and the metric come into second order, and

can be ignored in the present analysis. Note that the equations of motion for the dilaton

receive no correction to first order and thus the behavior of the dilaton is unchanged from

eq. (2.6). Therefore, we need only to develop a first order equation in gtϕ and At to

get information for the angular momentum. We do this by extending straightforwardly

Garfinkle and Rey’s work for a magnetically charged Reissner-Nordstöm black hole to the

case of a magnetically charged dilaton black hole.

Let the point electric charge be at rest at a point r = b on the polar axis θ = π in the

field of a magnetically charged dilaton black hole, then its stress-energy tensor and current

vector are given by

T ab =
m

2πR2(b) sin θ
λ(b)−1 δ (r − b) δ (θ − π)

(

∂

∂t

)a (

∂

∂t

)b

, (3.1)

ja =
e

2πR2(b) sin θ
δ (r − b) δ (θ − π)

(

∂

∂t

)a

. (3.2)

The system is stationary and axisymmetric, and thus has its corresponding Killing vectors

(∂/∂t)a and (∂/∂φ)a. In an axisymmetric, asymptotically flat spacetime with the axial

Killing vector (∂/∂φ)a, the total angular momentum [19] J can be calculated by performing

the Komar integral defined by

J ≡ 1

16π

∫

S
εabcd∇c

(

∂

∂ϕ

)d

, (3.3)

where S is a two-sphere in the asymptotic region where Tab is assumed to vanish. This total

angular momentum of the system contains both the intrinsic spin of the black hole and the

angular momentum stored in the electromagnetic field. To extract directly the information

on the angular momentum from the equations of motion, we define the angular momentum

contained within a two-sphere S(r) of constant r and t:

L(r) ≡ 1

16π

∫

S(r)
εabcd∇c

(

∂

∂ϕ

)d

, (3.4)

and the total angular momentum J is then given by

J = lim
r→∞

L(r). (3.5)

Obtaining the equation governing L(r) is the purpose of this section. L(r) can be

expressed in terms of gtϕ and unperturbed metrics of the black hole. By straightforwardly

calculating the integral of eq. (3.4), we obtain the following expression for the angular

momentum to first order in gtϕ

L(r) =
1

6
R4 d

dr

( χ

R2

)

, (3.6)
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where R2 is the radial metric component of (2.9) and χ is defined as follows

χ ≡ 3

4

∫ π

0
gtϕ sin θ dθ. (3.7)

Since gtϕ and At appear mixed in the Einstein and Maxwell equations, it will be convenient

to define another quantity u related to At by

u ≡ −3

2

∫ π

0
At sin θ cos θdθ. (3.8)

Taking the t−ϕ component of Einstein equation (2.4) and the t component of Maxwell

equation (2.2), evaluating all quantities to first order in gtϕ and At, and using the defini-

tions (3.7) and (3.8), we find the following equations for u and χ:

λ2 d2χ

dr2
− 2

R2

(

1− 1

2

dR2

dr

dλ2

dr
+Q2 e−2αφ

R2

)

χ+4Q
e−2αφ

R2
u = 0, (3.9)

λ2

R2

d

dr

(

R2 du

dr

)

+ λ2 r2

R2

d

dr

(

R2

r2

)

du

dr
− 2u

R2
+

2Q

R4
χ = 6πe2αφ

∫ π

0
jt sin θ cos θdθ .(3.10)

Inserting eqs. (2.6), (2.8) and (3.6) into eq. (3.9), u can be expressed in terms of L as

follows

u = − 3

2Q

r2

R2
λ2 dL

dr
+

Q

R2
χ. (3.11)

Finally, inserting this expression into eq. (3.10), we get the following equation which governs

the angular momentum function L(r):

d

dr

[

R4

r2

d

dr

(

λ2r2

R2

dL
dr

)

− 2

(

1 +
2Q2

r2

)

L
]

= −4πQR2

λ2

∫ π

0
jt sin θ cos θdθ

= −2eQ δ(r − b), (3.12)

where we have used eq. (3.2) to evaluate the integral. eq. (3.12) is the main result of this

section. It is easy to check that, when α = 0, eq. (3.12) reduces to the equation for L
obtained in ref. [12].

4. Solutions of the second-order equation

Since the right hand side of eq. (3.12) vanishes when r 6= b, it will be convenient to consider

the nonhomogeneous, linear, second-order differential equation

DL = C, (4.1)

where C is an integration constant and D is the differential operator defined as

D ≡ R4

r2

d

dr

(

λ2r2

R2

d

dr

)

− 2

(

1 +
2Q2

r2

)

. (4.2)
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It follows from eq. (3.12) that C is discontinuous at r = b and the difference is given by

C> − C< = −2eQ (4.3)

where C> and C< are values of DL in regions r > b and r < b respectively. The constants

C> and C< may depend on b but not on r.

The general solution of the second-order equation (4.1) is composed of two homo-

geneous solutions and a particular solution, and satisfies automatically the third-order

equation (3.12) when r 6= b. A particular solution ℓp(r) of the inhomogeneous equation is

given by:

ℓp(r) =
a

6

(

3r+ +
3 − α2

1 + α2
r− − 4

1 + α2

r+r−
r

)

, (4.4)

with the inhomogeneous term

C = −a

3

(

3r+ +
3 − α2

1 + α2
r−

)

. (4.5)

This inhomogeneous solution behaves well in the whole region of our interest, from r+ to

∞. As we will see in the next section, this corresponds to the angular momentum of the

slowly rotating dilaton black hole.

On the other hand, we have no explicit solutions of the second-order homogeneous equa-

tion (4.1) with C = 0 for arbitrary α. However, the properties of two linearly independent

solutions of the homogeneous equations can be inferred by examining the indicial equations

near the singularities at r = r+ and ∞. For non-extremal black holes (as r+ > r−), the

indicial equations say that one solution approaches a finite value, but the other solution

diverges in the order of ln(r − r+) at r = r+. As r goes to the infinity, i.e., r → ∞, one

solution diverges in the order of r2 but the other solution converges to zero in the order of

r−1.

Furthermore, it can be easily shown that there can be no homogeneous solution finite

at both the singularities, i.e., one solution which is finite at r+ should diverge at ∞ and, on

the contrary, the other solution which is divergent at r+ should be zero at ∞. The proof is

as follows: let’s suppose that there is a solution ℓ(r) finite at both singularities. We know

that then the solution must satisfy ℓ(r+) 6= 0 and ℓ(∞) = 0 from the indicial equations at

r+ and ∞ and we can assume that ℓ(r+) > 0 without loss of generality. Now it will be

more convenient to rewrite the second-order homogeneous equation (4.1) with C = 0 as

follows

(r − r+)(r − r−)ℓ′′+

(

r++
1 − 3α2

1 + α2
r−−2

1−α2

1+α2

r+r−
r

)

ℓ′−2

(

1+
2

1+α2

r+r−
r2

)

ℓ = 0. (4.6)

We easily see, from this equation, that ℓ′ is positive at r+ because the first term of the left

hand side vanishes, the coefficient of ℓ′ is positive there, and the coefficient of ℓ is negative

definite. On the other hand, according to the maximum and minimum value theorem, ℓ

must have a maximum value at a point rm between r+ and ∞. At the point r = rm, ℓ′

should be zero by our assumption. However, this leads us to conclude that ℓ′′ should be
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positive, and so ℓ(r) is downwardly convex at rm. However, this contradicts our assumption

that the function ℓ(r) has the maximum at rm. Thus, we can conclude there can be no

solution of the homogeneous equation (4.1) which is finite simultaneously at r = r+ and

∞.

Let’s suppose that ℓ1(r) is such a solution of the homogeneous differential equation (4.1)

which is finite at r+ and divergent according to r2 as r → ∞. Then, the second solution

ℓ2(r) can be generated as

ℓ2(r) = ℓ1(r)

∫ ∞

r

R(r′)2

r′2λ(r′)2ℓ1(r′)2
dr′. (4.7)

Evidently, ℓ2(r) diverges by order ln(r − r+) near r = r+ because ℓ1 is finite there, and ℓ2

converges by order r−1 as r approaches ∞ because ℓ1 diverges by order r2 there. It will

be sufficient to know these properties of the homogeneous solutions to extract qualitative

aspects of the angular momentum due to electromagnetic fields.

On the other hand, for extremal black holes the indicial equation near r = r+ differs

from that above, and says that a solution goes to zero according to (r−r+)D+ and the other

solution diverges as (r−r+)D− , where D± ≡ (3α2−1±
√

17α4 + 26α2 + 25)/2(1+α2). The

indicial equation at ∞ is not different from that in the case of non-extremal black holes.

Then, ℓ1(r) is zero at r+ and diverges at ∞, but ℓ2(r) is divergent at r+ and vanishes as

r → ∞.

5. Electromagnetic angular momentum

In this section we examine the angular momentum of an electric charge at rest in the field of

a magnetically charged black hole using the properties of the solution shown in the previous

section. In general, the total angular momentum J contains contributions from both the

rotation of the black hole itself and the electromagnetic field around the black hole. There

are additional electromagnetic fields induced by the rotation of the black hole besides the

electric field of the charge and the magnetic field of the black hole. Those induced fields

also contribute to the angular momentum of the system. However, we will separate out

this contribution together with the intrinsic spin of the black hole from the total angular

momentum leaving only the portion irrespective of the rotation of the black hole, i.e., the

‘electromagnetic angular momentum’ coming from the electric field of the charge and the

magnetic field of the black hole. It will be interesting to compare this electromagnetic

angular momentum with the angular momentum of the charge-monopole system in flat

space. Probably the easiest way to find the electromagnetic angular momentum is to

compute the angular momentum for an electric charge at rest at a distance from a non-

rotating magnetically charged black hole. However, it may not be possible to set up such

a configuration from the outset, when the charge is held at a finite distance from the hole.

The black hole may not stay static under the influence of the electric field of the charge,

but it may keep on rotating as long as the charge is held at a fixed position forcefully.

To see this, let’s suppose a magnetically charged black hole immersed in the weak,

asymptotically uniform electric field. This situation is equivalent, by electromagnetic dual-

ity, to the case of an electrically charged black hole immersed in the weak, asymptotically
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uniform magnetic field considered by Bičák and Dvořák in [9]. Therefore, we can directly

write down the metric perturbation from their work. For the general stationary and ax-

isymmetric perturbations, the only nonvanishing component of the metric has the form

gtϕ = −a

(

2M

r
− Q2

r2

)

sin2 θ + 2QE0

(

r − Q2

r
+

Q4

2Mr2

)

, (5.1)

where E0 is the strength of the asymptotically uniform external electric field and a is a

small angular momentum parameter. As mentioned in [9], this is not valid for arbitrarily

large r since a uniform field in an asymptotically flat spacetime would contain an infinite

amount of energy. It is meaningful only for r satisfying the condition | rE0 |≪ 1. Setting

E0 = 0, the metric represents a slowly rotating Kerr-Newman black hole. With a = 0, it

gives the perturbation describing the Reissner-Nordström black hole immersed in the weak,

asymptotically uniform electric field of strength E0. Using the formula (3.6), we may then

read off the angular momentum within a sphere of radius r as

L(r) = −a

(

M − 2Q2

3r

)

+ QE0

(

Q2 − r2

3
− 2Q4

3Mr

)

. (5.2)

The first contribution explicitly comes from the rotation of the Kerr-Newman black hole

and it would have have vanished if we had introduced the Reissner-Nordström black hole

(of a = 0) from the outset. The second contribution comes from the electromagnetic

fields of the system and vanishes only as the external electric field disappears. That is,

it appears because the hole is immersed in the external electric field. When a = 0, the

angular momentum within the horizon is given by

L(r+) = −2

3
QE0(M

2 − Q2)

(

1 +

√

1 − Q2

M2

)

, (5.3)

which is not zero unless the black hole approaches its extremality. This may originate

from the electromagnetic fields inside the horizon, but may be perceived as usual rotation

when viewed from the outside in accordance with the no-hair theorem. It is determined

only by the charge and mass of the hole and the strength of the external field. It is thus

tempting to conjecture that the magnetically charged black hole immersed in an external

electric field should be constantly rotating with an angular momentum determined by those

quantities. Let’s suppose that one tries to stop the rotation of the hole by extracting its

rotational energy (for example, via the Penrose process or the superradiant scattering)

keeping the position of the charge fixed. However, during the extraction process, energy

must be constantly supplied to the system through the external field when he tries to keep

its strength constant. The rotation is kept constant, because the angular momentum is

determined only by the charge and mass of the hole and the strength of the external field.

Thus, it may not be realistic to consider a non-rotating magnetically charged black hole

immersed in an external electric field.

On the same line, it may be impractical to consider a non-rotating magnetically charged

black hole immersed in the electric field of the charge. Therefore, we have to consider first

the system of a charge and a rotating magnetically charged black hole, and then disentangle
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the effect due to the rotation of the hole itself leaving only the electromagnetic angular

momentum. As a way to disentangle it from the angular momentum, we consider the

angular momentum obtained by performing the Komar integral at the horizon: LH ≡
L(rH), and then drop the contribution coming from this quantity to the total angular

momentum measured in the asymptotic region: J ≡ L(∞). To do this, we first consider

the angular momentum of a slowly rotating dilaton black hole and examine the relation

between the two quantities.

A. Angular momentum of a slowly rotating dilaton black hole. We first recall

the angular momentum of a slowly rotating dilaton black hole mentioned in section 2.

Inserting the metric component gtϕ of (2.14) into the formula (3.6) and (3.7), we get

L(r) = −a

6
R4(r)f ′(r) =

a

6

(

3r+ +
3 − α2

1 + α2
r− − 4

1 + α2

r+r−
r

)

. (5.4)

The angular momentum is directly read by

J ≡ L(∞) =
a

6

(

3r+ +
3 − α2

1 + α2
r−

)

, (5.5)

which is coincident with the result obtained in [15]. Thanks to the formula (5.4), we can

write the angular momentum contained between two spheres with radii r1 and r2 as the

difference: L(r2) − L(r1). We can then divide the angular momentum into two parts.

The first part is the angular momentum inside the horizon. It may be interpreted as the

intrinsic spin of the black hole and its magnitude is

LH ≡ L(r+) =
a

6
(3r+ − r−) . (5.6)

The second part is the angular momentum outside the horizon and is written by

Lout ≡ L(∞) − L(rH) =
2r−a

3(1 + α2)
=

2

3

Q2a

r+
. (5.7)

This part can be regarded as the angular momentum stored in the electromagnetic field

outside the black hole. Since there exists a non zero component of electric field induced

due to the rotation of the black hole, the electromagnetic angular momentum is not zero

as it would be for a non-rotating charged or a rotating neutral black hole.

Eliminating a by using (5.6) from (5.5), the angular momentum of a slowly rotating

dilaton black hole can be rewritten in terms of the horizon angular momentum as

J =
LH

(3r+ − r−)

(

3r+ +
3 − α2

1 + α2
r−

)

. (5.8)

We will use this relation to decouple the effect of the spin of black hole from the electro-

magnetic field angular momentum below.
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B. Angular momentum stored in the electrostatic and magnetostaic fields.

Here we construct an expression for the electromagnetic angular momentum using the

properties, discussed in the previous section, of the particular and the homogeneous so-

lutions of the second-order differential equation (4.1) in terms of ℓ1, ℓ2, and ℓp and their

differentials. From the properties of the solutions, L(r) can be written as

L(r) = k1ℓ1(r) + kpℓp(r), r < b, (5.9)

L(r) = k2ℓ2(r) + k̃pℓp(r), r > b, (5.10)

where k1, k2, kp, and k̃p are coefficients to be determined from matching conditions at

r = b. The continuity of L and dL/dr at r = b yields two conditions:

k1ℓ1(b) − k2ℓ2(b) + k̄pℓp(b) = 0, (5.11)

k1ℓ
′
1(b) − k2ℓ

′
2(b) + k̄pℓ

′
p(b) = 0, (5.12)

where k̄p ≡ kp − k̃p . The discontinuity of DL at r = b yields that

k̄p Dℓp|r=b = 2eQ, (5.13)

where we used the fact that ℓ1 and ℓ2 are solutions of the homogeneous equation, i.e.,

Dℓ1(r) = Dℓ2(r) = 0. k1, k2, k̄p are determined by above three conditions:

k1 = −
ℓp(b)ℓ

′
2(b) − ℓ′p(b)ℓ2(b)

ℓ1(b)ℓ′2(b) − ℓ′1(b)ℓ2(b)
k̄p , (5.14)

k2 = −
ℓp(b)ℓ

′
1(b) − ℓ′p(b)ℓ1(b)

ℓ1(b)ℓ′2(b) − ℓ′1(b)ℓ2(b)
k̄p , (5.15)

k̄p = −6eQ

a

(

3r+ +
3 − α2

1 + α2
r−

)−1

, (5.16)

where we used (4.5) in the last line. From (4.4) and (5.10), it is straightforward to show

that the total angular momentum is expressed in term of k̃p as follows

J = lim
r→∞

L(r) = k̃p lim
r→∞

ℓp(r) =
a

6

(

3r+ +
3 − α2

1 + α2
r−

)

k̃p. (5.17)

Therefore, we still need another additional condition to determine k̃p. We may think that

the total angular momentum is composed of two parts. The first part is the angular

momentum due to the rotation of the black hole, which includes the intrinsic spin of the

black hole and the contribution from magnetic and electric fields induced due to its rotation.

The second part is the angular momentum stored in the electromagnetic field unaffected

by the rotation of the black hole. This part corresponds to the angular momentum of an

electric charge held at rest around a non-rotating magnetically charged black hole that

would have if such configuration could been set up.

Since we are mainly interested in the latter, we separate out the former from the total

angular momentum. To do this, we suppose that the angular momentum contained within

the horizon is to be LH = L(r+), that is,

LH = k1ℓ1(r+) + kpℓp(r+). (5.18)
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The coefficient k̃p is determined from (5.14), (5.16), (5.18), and (4.4) and the angular

momentum is given by the expression

J =
LH

(3r+ − r−)

(

3r+ +
3 − α2

1 + α2
r−

)

+ eQ

(

1 − ℓ1(r+)

ℓp(r+)

ℓp(b)ℓ
′
2(b) − ℓ′p(b)ℓ2(b)

ℓ1(b)ℓ′2(b) − ℓ′1(b)ℓ2(b)

)

. (5.19)

The first term of the right hand side represents the part due to the rotation of the black

hole as discussed in the previous subsection. The second term is our main result of this

subsection and represents the angular momentum stored in the electromagnetic field which

are not affected by the spin of black hole. The electromagnetic angular momentum Jem

can be rewritten as follows

Jem = eQ

[

1 − ℓ1(r+)

ℓp(r+)

(

ℓp(b)

ℓ1(b)
− b2λ2(b)

R2(b)

(

ℓp(b)ℓ
′
1(b) − ℓ′p(b)ℓ1(b)

) ℓ2(b)

ℓ1(b)

)]

, (5.20)

where we have used the relation (4.7) and eliminated ℓ′2(b). Note that this quantity is

independent of the angular momentum parameter a, even though we introduced it into the

inhomogeneous solution ℓp.

Unfortunately, exact forms of ℓ1 and ℓ2 are not known for general coupling α. We know

explicit forms of them only for α = 0 and
√

3. Therefore, we first examine quantitatively

the electromagnetic angular momentum for α = 0 and
√

3 with explicit forms of ℓ1 and ℓ2.

We then qualitatively estimate the behavior of Jem using the properties of ℓ1, ℓ2, and ℓp and

confirm this estimation by analyzing the behavior of L(r) for arbitrary coupling α. Finally,

we will numerically find the angular momentums for values α = 1/
√

3 and 1. We choose

these values because the values α = 0, 1/
√

3, 1,
√

3 are well within regimes of α where the

extremal black holes show qualitatively different behaviors. Moreover, they are meaningful

in the context of supergravity and string theories. As mentioned in section 2, when α = 0,

the action (2.1) is the Einstein-Maxwell system with an uncoupled scalar, which we can

take to be constant. The theory with α = 1 arises naturally in the reduction of the heterotic

string on T 6 [17]. The value
√

3 appears in Kaluza-Klein compactification from five to four

dimensions. Finally, when α = 1/
√

3, the four-dimensional extreme dilaton black hole is

interpreted as the double-dimensional reduction of a nonsingular five-dimensional black

string which is a solution of the pure five-dimensional supergravity [18].

C. For α = 0. When α = 0, two independent solutions of the homogeneous equation are

given by

ℓ1(r) = r2 − 3r+r− +
4r2

+r2
−

r+ + r−

1

r
, (5.21)

ℓ2(r) = ℓ1(r)

∫ ∞

r

dr′

λ2(r′)ℓ2
1(r

′)

= −(r+ + r−)2

(r+ − r−)4

[

r +
1

2
(r+ + r−) − 2

3

r+r−(r2
+ + 10r+r− + r2

−)

(r+ + r−)2
1

r

]

−(r+ + r−)2

(r+ − r−)5

[

r2 − 3r+r− +
4r2

+r2
−

r+ + r−

1

r

]

ln

(

r − r+

r − r−

)

, (5.22)
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Figure 1: Jem/eQ with respect to b when e = 0.001 and Q = 1 for α = 0 and
√

3. The thick solid

line is for an extremal black hole with the critical mass Mc = Q/
√

1 + α2, the dashed line and the

thin solid line for a black hole with M = 2Mc and 3Mc, respectively.

and the inhomogeneous solution of eq. (4.1) is given by

ℓp(r) =
a

6

(

3(r+ + r−) − 4r+r−
r

)

, (5.23)

with C = −a(r+ + r−). We can easily check that all the properties mentioned in the

previous section hold with these explicit forms of solutions. ℓ1 is finite at r = r+ and

ℓ1(r+) = r+(r+ − r−)2/(r+ + r−), while it is divergent according to r2 as r → ∞. ℓ2

diverges in the order of ln(r − r+) at r = r+, and it goes to zero according to r−1 as

r → ∞. On the other hand, in the case of the extremal black hole, ℓ1 vanishes by order

(r − r+)2, while ℓ2 diverges by order (r − r+)−3 at r = r+.

When we insert these solutions into (5.20), the electromagnetic angular momentum is

calculated as follows

Jem = eQ

[

1 − ℓ1(r+)

ℓp(r+)

(

ℓp(b)

ℓ1(b)
− a(r+ + r−)

(

b − 2
r+r−

r+ + r−

)

λ2(b)
ℓ2(b)

ℓ1(b)

)]

. (5.24)

We can easily check that this result is coincident with the result obtained for the Reissner-

Nordström black hole in [12]. The angular momentum Jem changes from 0 to eQ as b goes

from r+ to ∞. Furthermore, by differentiating (5.24) with respect to b one can easily show

that Jem is a monotonic function of b. That is, Jem changes monotonically from 0 to eQ.

In the case of extremal black holes, ℓ1(r+) = 0 and the second term in the square bracket

of (5.24) vanishes identically. The angular momentum is then precisely eQ regardless of

the separation distance b between the charge and the black hole. Plots for Jem of (5.24)

with respect to b are shown in figure 1. (a).

D. For α =
√

3. When α =
√

3, two independent solutions of the homogeneous equation
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are as follows:

ℓ1(r) =
1

r
(r − r−)3, (5.25)

ℓ2(r) = ℓ1(r)

∫ ∞

r

R2(r′)

r′2λ2(r′)ℓ2
1(r

′)
dr′

= − r+

(r+ − r−)3

[

r +
1

2
(r+ − 5r−) − r−

6r+

(

r2
+ − 5r+r− − 2r2

−

) 1

r

]

− r+

(r+ − r−)4
(r − r−)3

r
ln

(

r − r+

r − r−

)

, (5.26)

The inhomogeneous solution follows from (4.4) as

ℓp(r) =
a

6

(

3r+ − r+r−
r

)

, (5.27)

with a constant nonhomogeneous term C = −ar+. Evidently, these solutions also satisfy

all the properties mentioned in the previous section as for α = 0: ℓ1(r+) = (r+ − r−)3/r+

at r = r+ and diverges according to r2 as r → ∞. ℓ2 diverges in the order of ln(r − r+)

at r = r+, and it goes to zero according to r−1 as r → ∞. On the other hand, in the

case of the extremal black holes, ℓ1 vanishes by order (r − r+)3, while ℓ2 diverges by order

(r − r+)−1 at r = r+.

Inserting these solutions into (5.20), we obtain the following expression for the elec-

tromagnetic angular momentum:

Jem = eQ

[

1 − ℓ1(r+)

ℓp(r+)

(

ℓp(b)

ℓ1(b)
− ar+(b − r+)

ℓ2(b)

ℓ1(b)

)]

. (5.28)

We can easily check that, as for α = 0, Jem changes monotonically from 0 to eQ as b goes

from r+ to ∞ for non-extremal black holes and is eQ regardless of the separation distance

b for extremal black holes. Plots for Jem of (5.28) with respect to b are shown in figure 1.

(b).

E. For arbitrary α. Even though we don’t have explicit forms of homogeneous solutions

ℓ1 and ℓ2, we can qualitatively estimate the electromagnetic angular momentum from (5.20)

using the properties of the solutions discussed in the previous section. First of all, as for the

case α = 0,
√

3, the angular momentum depends upon the separation distance b between

the black hole and the electric charge. Since ℓ2 converges by order r−1 and ℓ1 diverges

by order r2 as r approaches ∞, the second term vanishes as the separation distance goes

to infinity. That is, (5.20) says that, as b → ∞, the electromagnetic angular momentum

approaches eQ. On the other hand, when the electric charge approaches the horizon, the

angular momentum becomes zero, i.e., Jem → 0 as b → r+. This is easily seen from

observation that the second term in the large round bracket vanishes as b → r+. It comes

from the facts that ℓ1 goes to a finite value, ℓ2 diverges only by order ln(r − r+), but λ2

vanishes by order (r − r+) as r → r+. Thus the angular momentum Jem changes from 0

to eQ as b goes from r+ to ∞.

In the case of extremal black holes, i.e., when r+ = r−, ℓ1 goes to zero by order larger

than (r − r+)2 near the horizon as mentioned above, and ℓ1 vanishes identically at r = r+.
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Figure 2: Jem/eQ with respect to b when e = 0.001 and Q = 1 for α = 1/
√

3 and 1. The thick

solid line is for an extremal black hole with Mc = Q/
√

1 + α2, the dashed line and the thin solid

line for a black hole with M = 2Mc and 3Mc, respectively.

The second term in the square bracket then vanishes also. Thus, the angular momentum is

precisely eQ regardless of the separation b between the charge and the dilaton black hole,

as for the monopole-charge system in flat space.

These properties are confirmed numerically. The electromagnetic angular momenta

Jem/eQ are plotted versus the separation distance b in figure 2 for extremal and non-

extremal black holes. The numerical results for α = 1/
√

3 and 1 has similar behavior as

for α = 0,
√

3.

So far we have examined the angular momentum of an electric charge placed at rest

outside a magnetically charged dilaton black hole. We have seen that the electromagnetic

angular momentum, the part independent of the rotation of the black hole, shows several

common features regardless of the dilaton coupling strength, even though the qualitative

features of black holes are drastically different depending on the dilaton coupling. It changes

monotonically from eQ to 0 as the charge goes down from infinity to the horizon. However,

in the extremal black hole case, it is precisely eQ as in the charge-monopole system in flat

space and its dependence upon the separation distance disappears.

Before ending this section, we would like to see what happens when the charge ap-

proaches the horizon from infinity. Let’s suppose the black hole does not rotate at the

outset and the charge is placed at rest at an infinite distance from it. Then the angular

momentum of the system is all stored in the electromagnetic field outside the horizon and

its magnitude is simply eQ. As the charge moves down radially toward the horizon, the

black hole starts to rotate and the spin angular momentum Js increases monotonically

because the total angular momentum J is conserved, while the electromagnetic angular

momentum Jem decreases monotonically. When the charge reaches the horizon, the trans-

fer is completed, i.e., Jem is decreased in magnitude from eQ to zero, while Js is increased

from zero to eQ. As a result, the magnetically charged black hole turns into a dyon black

hole charged with e and Q and rotating with the total angular momentum of eQ. On the

other hand, for the extreme black hole Jem = eQ for all separation distance between the
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charge and black hole. Thus as the charge moves down toward the black hole, the angular

momentum transfer does not occur and the black hole does not spin up.

6. Discussions

We have analyzed the angular momentum of an electric charge placed at rest outside a

magnetically charged dilaton black hole. Even though the qualitative features of black

holes depend crucially on the dilaton coupling, the angular momentum stored in the elec-

tromagnetic fields shows several common features regardless of the strength of dilaton

coupling. It changes monotonically from eQ to 0 as the charge goes down from infinity to

the horizon. Therefore, one can spin up a magnetically charged black hole by throwing an

electric charge radially into it. However, in the extremal black hole case, its dependence

upon the separation disappears and the field angular momentum becomes independent of

the distance between the two objects. That is, it is precisely eQ as for the system of an

electric charge and a magnetic monopole in flat space, so spinning up the black hole is not

possible as long as the charge stays outside the horizon as pointed out in [12]. Explicitly,

these results should equally hold for a system of a magnetic monopole and an electrically

charged black hole by the electromagnetic duality.

Clearly these features raise several questions. Why does the field angular momentum

change as the separation varies? That is, why is it eQ as the charge rests at infinity?

Why is it zero as the charge reaches the horizon? Why does its magnitude remain frozen

with the value eQ in the extremal limit of black holes independently of the separation

distance? Finally, can we expect those things to hold for other systems including different

magnetically charged black holes in various theories with more complicated field contents?

It seems to be natural to ask this question, because those phenomena are common to

all dilaton black holes which have drastically different features depending on the dilaton

coupling. Discussions on these questions are presented below.

At first glance, one may think that changing of the electromagnetic angular momentum

upon the separation distance occurs only in the presence of gravity, because the electro-

magnetic angular momentum of the charge-monopole system is given by the product of

the two charges irrespective of the separation distance in the absence of gravity. However,

it is not true. The exotic result in flat space comes from only a simple consideration that

both electric and magnetic charges are point-like. The contribution of the electromagnetic

field to the angular momentum is directly calculated from

~Jem =

∫

d3x ~r × (~E × ~B). (6.1)

With the fields of point-like electric charge and monopole given by ~E = e~r′/r′3 and ~B =

Q~r/r3 with r′ ≡ |~r − ~b| respectively, the angular momentum density, integrand of (6.1),

varies according to the separation distance between the two objects, but the integral of the

density over the whole region is independent of the separation distance. There is no way to

transfer the electromagnetic angular momentum to anything else. However, if we introduce

a magnetically charged classical object (with a nontrivial magnetic charge distribution)
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instead of the point-like monopole, then we may observe the separation dependence of the

electromagnetic angular momentum even in flat space.

To see this, we address a simple example in flat space: a system of an electric charge

and a magnetically charged non-conducting spherical shell of radius R. The magnetic

charges are evenly distributed on the shell and the electric charge is located at a distance b

apart from the center of the shell. The contribution to the integral comes from only fields

outside the shell because the magnetic field vanishes inside the shell. When both objects

are at rest, the electromagnetic angular momentum is then directly calculated to give

Jem = eQ

(

1 − R2

3b2

)

for b ≥ R, (6.2)

= eQ
2b

3R
for b < R. (6.3)

Certainly, the magnitude of the electromganetic angular momentum varies with the sepa-

ration distance: it changes from 0 to eQ as the electric charge moves from the center to

infinity. This can be explained as follows. When the charge is placed at infinity from the

shell, i.e., when b ≫ R, the electric field flux across it vanishes. This is the same as letting

R → 0 while keeping b finite. Then the angular momentum is eQ and is all stored in the

electromagnetic fields outside the horizon. When the electric charge is closer to the shell,

the electric field flux crossing the shell is larger. Then, the integration (6.1) is smaller

because the integral is restricted outside the shell, unlike the charge and monopole system.

Finally, when the electric charge reaches the center of the shell, the density ~r × ( ~E × ~B)

becomes zero over the whole region because both fields are purely radial from the center

of the shell. Of course, in a dynamical process the total angular momentum should be

conserved. As the electric charge moves toward the shell, the latter is forced to rotate

about its axis due to the Lorentz force exerted on magnetic charges by the electric field

crossing it, and hence becomes spinning. Once the shell starts to rotate, an electric dipole

field is induced around it due to magnetic charges rotating about the symmetric axis and

a part of the angular momentum is stored in this dipole field and the existing magnetic

field. That is, as the electric charge gets closer, the electromagnetic angular momentum is

transferred to the spin of the shell and stored in the magnetic field and the induced electric

dipole field. The transfer becomes complete as the electric charge reaches the center of the

sphere. On the other hand, the electromagnetic angular momentum becomes independent

of the separation distance as the shell shrinks to a point, i.e, as R → 0. This confirms that

the change of the electromagnetic angular momentum upon the separation distance comes

from the nontrivial magnetic charge distribution.

Another interesting example is a system of an electric charge and a neutral conducting

sphere in which a magnetic monopole is centered. In the presence of the charge, two image

charges can be introduced within the conducting sphere, the first q′ = e(R/b) at the center

and the second q′′ = −e(R/b) at a distance b′′ = R2/b from the center. The first image

charge does not contribute to the angular momentum because its electric field is purely

radial like the magnetic field of the monopole. The second contributes negatively because

its charge is opposite to that of the real charge. The image charge is larger as the charge is
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closer to the conducting sphere. When the electric charge contacts the sphere finally, the

second image charge becomes −e and offsets the real charge leaving only the first image

charge of e at the center. Then the electromagnetic angular momentum vanishes because

both electric and magnetic fields are purely radial. On the contrary, when the charge goes

to infinity from the sphere, the image charges are diminished and the electric field flux

crossing the sphere becomes negligible, and so the electromagnetic angular momentum is

all stored in fields outside the sphere and has the magnitude of eQ. Taking into account

the contribution of image charges and using the results of the previous example, we obtain

the electromagnetic angular momentum for this system

Jem = eQ

(

1 − R2

b2

)

for b ≥ R, (6.4)

which, as expected, runs monotonically from 0 to eQ as the electric charge goes from the

sphere to infinity. This is very similar to the result obtained for the system of an electric

charge and a magnetically charged black hole. Again, as R → 0, the electromagnetic an-

gular momentum becomes independent of the separation distance, showing that its change

upon the separation comes from the nontrivial electromagnetic structure surrounding the

monopole.

Let’s return to the charge and black hole system. The result obtained in the previous

sections for the system can be explained analogously to the above examples. In fact, the

horizon of a black hole plays a role very similar to that of the conducting sphere in the above

example, even if a black hole has no material surface that differs from the surrounding space

in contrast to the conducting sphere. As is well known in the black hole electrodynamics, for

a distant observer the horizon can be thought of as a fictitious surface having an electric

charge density that compensates for the flux of electric field across the horizon, and an

electric current that closes tangential components of the magnetic fields at the horizon [20].

Thus, the separation dependence of the electromagnetic angular momentum of an electric

charge and a magnetically charged black hole could be explained in an analogous way to

the above example introducing a charge distribution on or image charge within the horizon,

though the electromagnetic fields are distorted and more complicated due to the gravity

around the black hole.

This can be interpreted from another perspective. In the previous sections we have

obtained the monotonic change of the angular momentum upon the separation, only solving

the equations of motion (2.2)–(2.4) without introducing ad hoc electromagnetic properties

of the horizon. Even though a black hole simply has a point source at the origin and

has no material structure, it has a nontrivial spacetime structure and is shielded by the

event horizon. The horizon does such a role as the conducting shell of the above example

does. Of course, there are no real material surface and no real charge distribution at the

horizon. However, the event horizon makes the electromagnetic angular momentum across

it indistinguishable from the intrinsic spin of the black hole in accordance with the no hair

theorem.

What happens is as follows. When the charge is placed at rest at infinity from a non-

rotating charged black hole, no flux of the electric field passes through the black hole and
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so no flux of the electromagnetic angular momentum crosses it. The integral of (3.4) on the

horizon, L(r+), then vanishes. The angular momentum is all stored in the electromagnetic

fields outside the horizon and its value is then eQ as for the charge and monopole system

in flat space.

On the other hand, when the charge approaches the black hole, the electric field lines

passing through the black hole increases and also the flux of the electromagnetic field

angular momentum across the horizon increases. Once the electromagnetic angular mo-

mentum crosses over the horizon, it becomes indistinguishable from the spin of the black

hole according to the no hair theorem. That means the influx of the electromagnetic an-

gular momentum across the horizon appears as the intrinsic spin of the black hole. As the

electric charge gets closer to the black hole, the flux of the electromagnetic angular mo-

mentum across the horizon increases and the spin of the black hole becomes larger. If the

black hole rotates, the existing magnetic and electric fields are supplemented with induced

electric and magnetic fields respectively, due to the dragging of the inertial frame into the

rotational motion around the black hole. These induced fields also store an amount of

electromagnetic angular momentum, which depends on the rotation of the black hole and

vanishes only when the angular momentum parameter a of the black hole becomes zero.

Therefore, as the charge approaches the black hole, the electromagnetic angular momen-

tum in the existing fields is continuously transferred to the spin angular momentum and

the electromagnetic angular momentum in the induced fields.

When the electric charge reaches the horizon, all the electrostatic multipoles except the

monopole fade away in accordance with the no hair conjecture. The electrostatic monopole

field due to this charge then becomes purely radial like the magnetic monopole field of the

black hole. So the angular momentum stored in these monopole fields is zero and the

transfer gets complete. A part of it is transferred to the spin of the black hole and the

rest is stored in the induced fields. Once the charge reaches the horizon, then the exterior

fields are exactly those of the rotating dyonic dilaton black hole with both the electric

and magnetic charges. For a slowly rotating dyonic dilaton black hole, the metric can be

displayed by (2.14) replacing Q2 with Q2 + e2 [21]. Since the total angular momentum is

eQ, the angular momentum parameter a then can be written, from (2.17), as

a = 6eQ

(

3r̄+ +
3 − α2

1 + α2
r̄−

)−1

, (6.5)

where r̄± are positions of outer and inner horizons of the dyonic dilaton black hole and are

obtained from (2.10) and (2.11) by replacing Q2 with Q2 + e2. Then, from (5.6) and (5.7),

the angular momentum within the horizon is given by

LH = eQ
(1 + α2)(3r̄+ − r̄−)

3(1 + α2)r̄+ + (3 − α2)r̄−
, (6.6)

and the angular momentum in the electromagnetic field induced by the rotation of the

black hole is

Lout = eQ
4r̄−

3(1 + α2)r̄+ + (3 − α2)r̄−
. (6.7)
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From above arguments, we can conclude that the separation dependence of the electromag-

netic angular momentum of the charge and black hole system originates from the existence

of the horizon, which serves as a nontrivial spacetime structure and obliterates all details

of the angular momentum swallowed up in accordance with the no hair theorem.

Finally, let’s see what happens as the black hole is extremal from the outset. The

results of previous sections say that the angular momentum stored in the electromagnetic

field outside the horizon is precisely eQ and is independent of the separation distance

between the charge and the black hole. It seems to be easy to give an explanation on this

phenomenon for the dilaton black hole. As mentioned in section 2, when α > 0, the proper

size of the extremal black hole is zero in that the area of the horizon 4πR2(r+) vanishes

and the degenerate horizon at r = r+ is singular. The extremal black hole looks like a

point-like object. The situation is then the same as with the charge-monopole system in

flat space. The electric field flux passing the black hole is zero. The angular momentum is

all stored in the electromagnetic field outside the horizon and has the constant value eQ.

This kind of explanation does not seem to hold for the system of the electric charge

and the extremal Reissner-Nordström black hole (as α = 0), because its horizon area is

4πr2
+ and its proper size is not zero. We may then naively expect that its cross-sectional

area for the capture of the electric flux should be πr2
+ and the electric flux across the

hole should be non-vanishing. According to our naive expectation, the contribution to the

total angular momentum of the system from behind the horizon should be non-zero in the

extremal limit in this configuration. However, this contradicts the above result that the

electromagnetic angular momentum outside the Reissner-Nordström black hole is precisely

eQ, independently of the separation distance between the charge and the black hole.

The puzzle is solved when we invoke that the component of the electromagnetic fields

normal to the horizon tends to be zero and the flux lines are totally expelled, as the black

hole approaches extremality. This is analogous to the “Meissner effect” for a magnetic

field around a superconductor. This phenomenon was first pointed out by J. Bičák and

Dbořák [9] in the context of the Einstein-Maxwell theory. They considered the electrically

charged Reissner-Nordström black hole immersed in the weak, asymptotically uniform

magnetic field and found that the magnetic flux lines are expelled from the black hole in

the extremal limit. Later, it was shown by Chamblin, Emparan and Gibbons [10] that

this effect broadly exists for various extremal black hole solutions including the dilaton

black hole and other extremal solitonic objects (such as p-branes) in string theory and

Kaluza-Klein theory.

Due to the electromagnetic duality, we can expect that the electric field is expelled

from the magnetically charged black hole in the extremal limit. Then the effective cross-

sectional area for the capture of the electric flux shrinks to zero and the electric flux across

the hole vanishes. The contribution to the total angular momentum of the system from

behind the horizon is then zero, because the black hole is non-rotating from the outset and

the electric field inside the horizon does not exist. Thus, even though the proper size of

the horizon is not zero in the extremal limit, the angular momentum is all stored in the

electromagnetic field outside the horizon as in the case of the charge-monopole system in

flat space and is precisely eQ.
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On the other hand, we could give an analogous explanation to the system of the charge

and the extremal dilaton black hole (as α > 0). As is well known, in four dimensions the

gauge field equation is conformally invariant. This means that, when we deal with the

dilaton black hole, the electromagnetic field does not distinguish whether we are working

in the Einstein frame or any other conformal frame related to it by an overall rescaling

of the metric by a factor of the dilaton as mentioned in [10]. In this sense, we could just

as well work in a conformally related metric where the extremal horizon is non-singular.

From the dilaton black hole solution (2.5)–(2.7), we easily see that such a conformal frame is

e2αφds2. In this frame the extremal black hole area is equal to 4πr2
+. However, the electric

flux across the horizon vanishes as shown in [10]. Once again, for the system of the charge

and the extremal dilaton black hole the contribution to the angular momentum from inside

the horizon is zero, because the black hole is non-rotating from the outset and the electric

field is absent inside the horizon. As a result, the field flux expulsion from the extremal

black hole horizon leads to the phenomenon that the electromagnetic angular momentum

of the system comprising an electric charge and an extremal magnetically charged black

hole is independent of the separation distance between the two objects and precisely eQ as

for the charge-monopole system in flat space.

In conclusion, above arguments appear to settle all the questions in the second para-

graph of this section. The reason why the electromagnetic angular momentum changes

from eQ to 0 as the charge is brought down from infinity to the horizon is due to the

no-hair nature of black holes in that the horizon makes the electromagnetic field angular

momentum across it indistinguishable from the intrinsic spin of the black hole and it makes

the electric field purely radial (leaving only the monopole field) when the charge reaches

the horizon. Next, the electromagnetic angular momentum having the precise value eQ in

the extremal limit of black holes independently of the separation distance is essentially re-

lated to the phenomenon that the electric flux lines are expelled from extremal black holes.

Since both the no-hair nature of black holes and the field expulsion from extremal black

holes are generic for black holes, we expect aforementioned properties of the electromag-

netic angular momentum to be generic for systems of an electric charge and a magnetically

charged black hole (or a magnetic monopole and an electrically charged black hole, by the

electromagnetic duality) in various theories with more complicated field contents, namely,

in string theory and Kaluza-Klein theory.
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